
Integrating Intel TDX remote attestation into the secure shell
protocol

Fabian Wesemann

firstname.lastname@stud.hs-flensburg.de

Flensburg University of Applied Sciences

Flensburg, Schleswig-Holstein, Germany

Abstract
Intel Trust Domain Extensions (TDX) allow the creation of Trusted

Execution Environments (TEE) to prevent third parties from ac-

cessing the workload’s memory. Integrating the remote attestation

capability of Intel TDX into the SSH protocol offers a way to allow

users or software to restrict connections to servers running inside

a Trusted Domain, thereby protecting intellectual property, user

data or meeting regulation criteria.

This paper presents the design of a challenge response proto-

col as well as a prototype implementation based on OpenSSH. It

features the creation of Intel TDX quotes, issuance of a derived

JWT using Azure attestation services and client-side validation of

signatures and claims, integrated into the SSH connection process.

1 Introduction
In traditional cloud computing settings, the platform owner has

significant control over executed workloads. Virtual Machines (VM)

allow the separation of different tenants on the same host, but the

workloads are still accessible for privileged software required to ex-

ecute the VM, e.g. the hypervisor [7]. In addition to disk encryption

(protecting data at rest) and protocols like SSH and TLS (protecting

data in transit), Confidential Computing aims to protect data in use,
which is stored in RAM.

The following sections explain how two existing solutions for

the protection of data in transit and data in use can be combined

using the remote attestation feature of Intel TDX.

2 Motivation and use cases
Secure communication between multiple machines over a network

is crucial for modern day computing. In addition to a secure con-

nection that protects the data against eavesdroppers, there are

scenarios where it may also be desirable to enforce client side rules

on the other side of a network connection, like the presence of a

Trusted Execution Environment.

Those scenarios include, but are not limited to

• transfering source code including intellectual property to a

remote git repository

• tunneling network traffic to a remote database to store

sensitiv data

• transfering backups to another datacenter

As we will see in section 3.3, SSH is widely used in the above

scenarios. Implementing remote attestation at this level allows the

adoption with different software and use cases without having to

add Confidential Computing awareness manually to every piece of

software.

3 Background
3.1 Intel TDX
The Intel Trust Domain Extensions (TDX) offer hardware based

security improvements, allowing the creation of VirtualMachines in

a secure environment, so called Trusted Domains[7]. By encrypting

a Virtual Machines memory using keys only accessible to the CPU,

the workload is isolated and can not be inspected or manipulated

by a cloud service provider or other tenants.

Compared to traditional cloud environments, a VM is susceptible

to manipulation or inspection by third parties. The cloud providers

employees, infrastructure and software anywhere in the stack from

the bios over to the hypervisor managing the resources are all

part of the trust boundary [7]. Confidential Computing technology

like Intel TDX works at the VM level by protecting integrity and

limiting the access to the memory using logical and cryptographic

measures, effectively limiting the trusted components[7].

3.2 Remote Attestation
To verify that a workload (in our case the SSH server) is running in

a Trusted Domain, a relying party can use the remote attestation

feature included in TDX [7]. Inside the Trusted Execution Envi-

ronment, measurements of the TD are gathered as a report. Using
the Intel SGX Attestation, a quote is generated from this report[4].

The authenticity of the quote and the reported data can be verified

using the Intel Trust Authority[8].

For Intel TDX capable VMs on the Microsoft Azure platform,

the remote attestation works different. To generate the report, the

Azure preview version of the Intel Trust Authority CLI tool is

needed[9]. The resulting quote and collected runtime information

is then sent to the Azure attestation service to retrieve a JSON Web

Token signed by Azure, which can then be used as proof for the

relying party to validate the integrity of the Trusted Execution

Environment.

In addition to the collected runtime information, arbitrary data

can be specified when generating the quote. The sha512 hash of

this data will be included in the signed JWT.

For this project, Azure Documentation on SGX Attestation[1]

and an official TDX example[3] where used to implement the attes-

tation.

3.3 Secure Shell Protocol
The Secure Shell protocol (SSH) is used to establish secured com-

munication over TCP/IP between two computers. Use cases include

shell access (for administration and deployment), tunneling (e.g. to

access a remote database not exposed to the internet) or the transfer

of files and data via a secure channel for other software like git or



F. Wesemann

rsync. SSH uses public key cryptography to protect the traffic as

well as authenticating identities of the server and the client resp.

the user[20].

The addition of remote attestation adds an extra layer of security,

since not only the identity of the server but also the environment

in which it operates in is validated against the clients expectations.

There are different implementations of SSH. This project focuses

on the widely adopted[17]OpenSSH, which provides (among others)

the necessary client (ssh) and server (sshd)[15].

4 Design
The SSH protocol supports a services mechanism. A client can re-

quest a service from the server. The server must either accept the re-
quest or terminate the connection if the service is not supported [14,

Sec. 10], which is a good fit for mandatory attestation. According

to the naming conventions in [14], the new service implementation

is named ra-ssh-attestation.
The SSH connection is initiated by the client. All attestation

related communication happens after the key exchange and user

authentication, but before the session is fully established. This pre-

vents reconnaissance attacks, as the content of the attestation report

is not observable by parties monitoring network traffic or attack-

ers trying to request attestation without being able to authorize

themselves as legitimate users of the system.

After the servers identity is verified using the hostkey and the

client has authenticated itself using one of the supported meth-

ods (e.g. password or public key), the client requests the ra-ssh-
attestation service.

The Server answers this request by sending a SSH2_MSG_SER-
VICE_ACCEPT message and the service name as specified in [14].

When the request is accepted, the client sends an RA_SSH_TOKEN_-
REQUEST message with a randomly generated nonce. The server

generates a proof to attest the Trusted Execution Environment in-

cluding the nonce and sends it to the client for verification in a

RA_SSH_TOKEN_RESPONSE message.

On the challenging side, the client receives the proof and vali-

dates it. This includes checking the presence of an Intel TDX TEE

as well as verifying that nonce sent with the clients request was

used to generate the report.

Failure during the attestation process terminates the connection.

After the client finished the validation, both sides proceed with the

usual SSH connection process.

5 Implementation
The implementation is based on the OpenSSH[15] project. The SSH

server - running in the Trusted Domain - takes the role of the

attester. The SSH client is the challenger and will only establish a

connection when the server is able to attest the Trusted Execution

Environment.

5.1 Environment
Development and testing was done using an Azure Standard DC2es

v5 Confidential VM[6] running Ubuntu 22.04.

The intel-trustauthority-cli version is 1.4.0.

5.2 Quote and token generation
The server generates an Intel TDX Report by invoking the intel-
trustauthority-cli command, passing a randomly generated

nonce as user_data (fig. 1, Step 4). The path to the binary can

be configured in the sshd_config file. Source of randomness for

nonce generation is arc4random_buf, as done in other parts of

OpenSSH.

To obtain a JSON web token that can be validated by the client,

the server sends the generated quote and runtime data (containing

the nonce) to an Azure attestation endpoint using the libcurl C li-

brary[19] (see fig. 1, step 5). The API URL was taken from the Azure

TDX example application[3, maa_config.json]. For the issued to-

ken, see listings 1 and 3. The JWT is then sent to the challenging

SSH client in the RA_SSH_TOKEN_RESPONSE message (fig. 1, step 7,

8).

5.2.1 Privilege separation. For security reasons, sshd runs SSH

sessions under a separate, unprivileged user account until the au-

thentication is completed. The unprivileged child can communi-

cate with the parent sshd process using the monitor implementa-

tion which passes requests and replies between the two (see [16],

monitor.c, monitor.h). Since the quote generation needs root

privileges, the MONITOR_REQ_RA_SSH_TOKEN and MONITOR_ANS_-
RA_SSH_TOKEN messages were added to generate the quote with

the required privileges and pass the result back to the unprivileged

child.

5.3 Verifying the evidence
The verification is implemented in azure_attestation_client.c
and exposed as a single function validate_azure_jwt accepting
the token (received from the server) and the nonce (as picked by

the client). It returns a single value indicating success or failure.

To parse and validate the JWT, the libjwt C library[5] is used

with a custom jwt_key_p_t key provider[13] implementation to

fetch the Azure signing keys with libcurl[19] using the information

contained in the JWT header (listing 1). Extraction of the attestation

information from the claims is done using jansson[12], which is

also used internally by libjwt.

5.3.1 Signature. The process of verifying an Azure JWT signature

is based on the description in [11].

First, the Azure X509 certificate must be fetched using the end-

point (jku) and key identifier (kid) provided in the JWT header

(listing 1, (fig. 1, step 9). The client should ensure that the certificate

is provided by Azure.

The OpenSSL library[18] is used to get the public key from the

certificate. Signature verification is done by libjwt in the decoding

step.

5.3.2 Claims. After the JWT signature is verified, the client checks

whether the claims (listing 3) match the expected values seen in ta-

ble 1 and verifies the existence of a Trusted Execution Environment

[2].

5.3.3 Nonce. Additionally, the x-ms-runtime.user_data field (list-
ing 3) contains the SHA512 hash of the user-data provided when

the quote was generated using the intel-trustauthority-cli,
which the client expects to match the SHA512 hash of the nonce it



Integrating Intel TDX remote attestation into the secure shell protocol

Key Value

eat_profile https://aka.ms/maa-eat-profile-tdxvm

x-ms-attestation-type tdxvm
x-ms-compliance-status azure-compliant-cvm
x-ms-runtime.user_data 𝑆𝐻𝐴512(𝑛𝑜𝑛𝑐𝑒)

Table 1: JWT claims and their expected values [2]

sent alongwith the RA_SSH_TOKEN_REQUEST (see fig. 1, step 3). Note
that, while the user data is specified in base64 at quote generation,

the hash is calculated on the raw data.

1 {
2 "alg": "RS256",
3 "jku": "https://sharedeus2e.eus2e.attest.azure.net/certs",
4 "kid": "6qubGPaYpJMjCD9chNyuh/ztq87166pwivQJz1quFRQ=",
5 "typ": "JWT"
6 }

Listing 1: Azure JWT header

6 Related work
Knauth et al. [10] integrated Intel SGX attestation into TLS. Using

X509 extensions, the attestation information is added to the existing

certificates. On the client side, the relying party extracts and verifies

the information.

7 Conclusions
This work demonstrates how remote attestation can be integrated

into the existing SSH protocol. The prototype implements the

challenge-response protocol, including the generation of the re-

port, integration of the Azure Attestation Service for JWT creation

and the verification of the presented evidence in the challenging

client.

8 Source
The implementation is published at https://github.com/tuftedd

eer/openssh-tdx-remote-attestation/. The repository includes

instructions to set up the virtual machine on Microsoft Azure as

well as a Docker image containing the modified ssh and sshd with

all dependencies needed.

References
[1] 2022. Attestation - attest sgx enclave. https://learn.microsoft.com/en-us/rest/a

pi/attestation/attestation/attest-sgx-enclave?view=rest-attestation-2022-08-

01&tabs=HTTP. Accessed: 2024-08-18. (Aug. 2022).

[2] 2024. Azure attestation eat profile for intel® trust domain extensions (tdx).

https://learn.microsoft.com/en-us/azure/attestation/trust-domain-extension

s-eat-profile. Accessed: 2024-09-15. (Aug. 2024).

[3] [n. d.] Azure tdx attestation example. https://github.com/Azure/confidentia

l-computing-cvm-guest-attestation/tree/tdx-preview/tdx-attestation-app.

Accessed: 2024-08-18. ().

[4] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu

Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2024. Intel tdx

demystified: a top-down approach. ACM Comput. Surv., 56, 9, Article 238, (Apr.
2024), 33 pages. doi: 10.1145/3652597.

[5] [SW] Ben Collins, libjwt version 1.17.2. vcs: https://github.com/benmcollins/li

bjwt.

[6] 2022. Dcesv5 and dcedsv5-series confidential vms. https://learn.microsoft.com

/en-us/azure/virtual-machines/dcesv5-dcedsv5-series. Accessed: 2024-08-26.

(Aug. 2022).

[7] Intel. 2022. Intel® trust domain extensions white paper. https://www.intel.co

m/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-1

7.pdf.

[8] [n. d.] Intel® trust authority. https://docs.trustauthority.intel.com/main/article

s/introduction.html. Accessed: 2024-08-18. ().

[9] [n. d.] Intel® trust authority cli for intel tdx (azure preview). https://github.co

m/intel/trustauthority-client-for-go/tree/azure-tdx-preview/tdx-cli. Accessed:

2024-08-18. ().

[10] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing,

andMona Vij. 2019. Integrating remote attestation with transport layer security.

(2019). https://arxiv.org/abs/1801.05863 arXiv: 1801.05863 [cs.CR].
[11] Thomas Van Laere. 2023. Azure confidential computing: verifying microsoft

azure attestation jwt tokens. https://thomasvanlaere.com/posts/2023/03/azure-

confidential-computing-verifying-microsoft-azure-attestation-jwt-tokens/.

Accessed: 2024-09-15. (Mar. 2023).

[12] [SW] Petri Lehtinen and contributors, jansson version 2.14. vcs: https://github

.com/akheron/jansson.

[13] [n. d.] libJWT Documentation. Accessed: 2024-08-23.
[14] Chris M. Lonvick and Tatu Ylonen. 2006. The Secure Shell (SSH) Transport

Layer Protocol. RFC 4253. (Jan. 2006). doi: 10.17487/RFC4253.

[15] [SW], OpenSSH. vcs: https://github.com/openssh/openssh-portable.

[16] [n. d.] Openssh privilege separation. https://github.com/openssh/openssh-port

able/blob/master/README.privsep. Accessed: 2024-08-22. ().

[17] [n. d.] Openssh users. https : / /www.openssh . com/users . html. Accessed:

2024-08-18. ().

[18] [SW], OpenSSL. vcs: https://github.com/openssl/openssl.

[19] [SW] Daniel Stenberg and contributors, libcurl version 8.8.0. url: https://curl

.se/libcurl/, vcs: https://github.com/curl/curl.

[20] [n. d.] What is ssh? | secure shell (ssh) protocol. https://www.cloudflare.com/l

earning/access-management/what-is-ssh/. Accessed: 2024-08-18. ().

https://github.com/tufteddeer/openssh-tdx-remote-attestation/
https://github.com/tufteddeer/openssh-tdx-remote-attestation/
https://learn.microsoft.com/en-us/rest/api/attestation/attestation/attest-sgx-enclave?view=rest-attestation-2022-08-01&tabs=HTTP
https://learn.microsoft.com/en-us/rest/api/attestation/attestation/attest-sgx-enclave?view=rest-attestation-2022-08-01&tabs=HTTP
https://learn.microsoft.com/en-us/rest/api/attestation/attestation/attest-sgx-enclave?view=rest-attestation-2022-08-01&tabs=HTTP
https://learn.microsoft.com/en-us/azure/attestation/trust-domain-extensions-eat-profile
https://learn.microsoft.com/en-us/azure/attestation/trust-domain-extensions-eat-profile
https://github.com/Azure/confidential-computing-cvm-guest-attestation/tree/tdx-preview/tdx-attestation-app
https://github.com/Azure/confidential-computing-cvm-guest-attestation/tree/tdx-preview/tdx-attestation-app
https://doi.org/10.1145/3652597
https://github.com/benmcollins/libjwt
https://github.com/benmcollins/libjwt
https://learn.microsoft.com/en-us/azure/virtual-machines/dcesv5-dcedsv5-series
https://learn.microsoft.com/en-us/azure/virtual-machines/dcesv5-dcedsv5-series
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://docs.trustauthority.intel.com/main/articles/introduction.html
https://docs.trustauthority.intel.com/main/articles/introduction.html
https://github.com/intel/trustauthority-client-for-go/tree/azure-tdx-preview/tdx-cli
https://github.com/intel/trustauthority-client-for-go/tree/azure-tdx-preview/tdx-cli
https://arxiv.org/abs/1801.05863
https://arxiv.org/abs/1801.05863
https://thomasvanlaere.com/posts/2023/03/azure-confidential-computing-verifying-microsoft-azure-attestation-jwt-tokens/
https://thomasvanlaere.com/posts/2023/03/azure-confidential-computing-verifying-microsoft-azure-attestation-jwt-tokens/
https://github.com/akheron/jansson
https://github.com/akheron/jansson
https://doi.org/10.17487/RFC4253
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable/blob/master/README.privsep
https://github.com/openssh/openssh-portable/blob/master/README.privsep
https://www.openssh.com/users.html
https://github.com/openssl/openssl
https://curl.se/libcurl/
https://curl.se/libcurl/
https://github.com/curl/curl
https://www.cloudflare.com/learning/access-management/what-is-ssh/
https://www.cloudflare.com/learning/access-management/what-is-ssh/


F. Wesemann

Figure 1: Remote attestation flow

1 Quote: BAACAIEAAAAAAAAAk5pyM/ecTKmUCg2zlX8GByxxGNDcfxhLFr0pGDnEuPoAAAAABAEHAAAAAAAAAAAAAAAAAJeQ2JoQIQ7Glop3PO4soFtaqXMJ82cnqW ⌋
hSe+Rgb8Geb3OszjUJRsnUapv3pj+EMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnGAY ⌋
AAAAAALTz4nSNgAcR2B+nXVtP7h7zCTMhdLJOBnyaiB

↩→

↩→

2

3 <...>



Integrating Intel TDX remote attestation into the secure shell protocol

4 runtime_data: eyJrZXlzIjpbeyJraWQiOiJIQ0xBa1B1YiIsImtleV9vcHMiOlsic2lnbiJdLCJrdHkiOiJSU0EiLCJlIjoiQVFBQiIsIm4iOiJ5dzY5T0FBQXU ⌋
zZ1E1YTJ1N0Rsa2FLWmhXbVNJLTU5RUszTFljN01nS2t1VnIyTDZzc1R5NDlTLXllUFdJY2Zrb2U5RldobVJTMVk3RVh2RUd6UXhuUkRkdUxqYjhweWJ5UGJH ⌋
OU53ZzNYOTktNGNiY3pWaHhJajNaUHFESFhvckhFTURnOWZLT240RUo1X1Y5enJ3VkEtVXpOcmxXdUJZRDZxY0l4bmIzMS1MYlRsRm1SMjNIN204TklPaDlmY ⌋
lE3NG1WRXlzYnMzWjQyNEIzbS11em5sX2RZanN5RTl0N1B1eGRsQTZUNVhleVdpN2hXRmdFV2lTbGMwS181b3diLUFaM0NPd1ZERTlzU21zU1NKZ2pvaHlkZ0 ⌋
1RbzZpMVhNZG1SV1BYNk10alF4YjBmTWhzdHpOR2xNWmItVVZqYzhEdmVWdWFUZ3J5MFcwT0dNNE1jQ1EifSx7ImtpZCI6IkhDTEVrUHViIiwia2V5X29wcyI ⌋
6WyJlbmNyeXB0Il0sImt0eSI6IlJTQSIsImUiOiJBUUFCIiwibiI6InVQVHRlQUFCQ0JvVW9MT0JlVlVMZXJmdkVQVXFySjZ3UG80WVhMTHAwdFVNTkE2bk5V ⌋
LW11TGpOUUxHLUg4blBwMFlucEVfZFE1eGc2NnhyT1RlU0NvWE9TR0xCUlMyR05zc0NSYTJyYWtWdnZMZGtQMVNpakYtYlNXV0U0VVJnbU9Zck5fS1BQWTQ5T ⌋
Wt4OG9BYnhubUUydnAwSjJSRGJPTG8tbWxlaERPLUdlQm5sVThkMnpybWhONlpMaTlwM1VENkRISGhuMDlXcXdwWXZrb1lNeGVHd0cxVmNNZXlhY3JWSUk3Z0 ⌋
NsQy1LX2lzWWRud1hIVW1jalJhWF9IN1ZkSkVfb1V0ajk4anpweVhfRWIwWkVGV29tWF9NMmo5T1AxTjZmbm1IUHM1ZDA5c09DYXpSOVpUVnh6TnBEYmRoREp ⌋
OR2pPTFpERE04djVmdzY4R1hRdyJ9XSwidm0tY29uZmlndXJhdGlvbiI6eyJjb25zb2xlLWVuYWJsZWQiOnRydWUsInJvb3QtY2VydC10aHVtYnByaW50Ijoi ⌋
Nm5aWm5ZYUpjNEtxVVpfeXZBLW11Y0ZkWU5vdXZsUG5JVG5OTVhzSGwtMCIsInNlY3VyZS1ib290Ijp0cnVlLCJ0cG0tZW5hYmxlZCI6dHJ1ZSwidHBtLXBlc ⌋
nNpc3RlZCI6dHJ1ZSwidm1VbmlxdWVJZCI6IkQyNjg1NzUxLURERTMtNDgxNC1BMkEyLTU2NUE2OUZFOTExQiJ9LCJ1c2VyLWRhdGEiOiIyRjFCQTFBQ0UyQz ⌋
Y4OUQwQTNBMzM0MEI5NzQ3MkU3RkNBNURCMDNCNjYyMUIyRkI3NjFGQjA2OEUzNzdCRTFDQTNENDk0NEU1MDYwQzYwN0VEMzlDM0UzRkNDQUYwMTE0QzMyMDJ ⌋
BRDUzMEZBMzE0Mzg2M0UxQjRFMTQ4NUIyMCJ9

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

5 user_data: ZmFiaWFu"

Listing 2: Output of trustauthority-cli whith shortened quote

1 {
2 "attester_tcb_status": "UpToDate",
3 "dbgstat": "disabled",
4 "eat_profile": "https://aka.ms/maa-eat-profile-tdxvm",
5 "exp": 1724352313,
6 "iat": 1724323513,
7 "intuse": "generic",
8 "iss": "https://sharedeus2e.eus2e.attest.azure.net",
9 "jti": "e7709b98c3556ae5d4310d0c99d76c5e6491e94ce2d6ff5cdec56333fddb1909",
10 "nbf": 1724323513,
11 "tdx_mrconfigid": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
12 "tdx_mrowner": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
13 "tdx_mrownerconfig": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
14 "tdx_mrseam": "9790d89a10210ec6968a773cee2ca05b5aa97309f36727a968527be4606fc19e6f73acce350946c9d46a9bf7a63f8430",
15 "tdx_mrsignerseam": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
16 "tdx_mrtd": "b4f3e2748d800711d81fa75d5b4fee1ef309332174b24e067c9a8816873a49e3c19579a1ca6d3ccfa26ccd4bb6fc17bb",
17 "tdx_report_data": "32accd5a211f291be609e1c6de2aa44e5145f3f21d32175cb6f520a3404e611b000000000000000000000000000000000000000 ⌋

0000000000000000000000000",↩→

18 "tdx_rtmr0": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
19 "tdx_rtmr1": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
20 "tdx_rtmr2": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
21 "tdx_rtmr3": "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
22 "tdx_seam_attributes": "0000000000000000",
23 "tdx_seamsvn": 260,
24 "tdx_td_attributes": "0000000000000000",
25 "tdx_td_attributes_debug": false,
26 "tdx_td_attributes_key_locker": false,
27 "tdx_td_attributes_perfmon": false,
28 "tdx_td_attributes_protection_keys": false,
29 "tdx_td_attributes_septve_disable": false,
30 "tdx_tee_tcb_svn": "04010700000000000000000000000000",
31 "tdx_xfam": "e718060000000000",
32 "x-ms-attestation-type": "tdxvm",
33 "x-ms-compliance-status": "azure-compliant-cvm",
34 "x-ms-policy-hash": "9NY0VnTQ-IiBriBplVUpFbczcDaEBUwsiFYAzHu_gco",
35 "x-ms-runtime": {
36 "keys": [
37 {
38 "e": "AQAB",
39 "key_ops": [
40 "sign"
41 ],
42 "kid": "HCLAkPub",
43 "kty": "RSA",



F. Wesemann

44 "n": "yw69OAAAu3gQ5a2u7DlkaKZhWmSI-59EK3LYc7MgKkuVr2L6ssTy49S-yePWIcfkoe9FWhmRS1Y7EXvEGzQxnRDduLjb8pybyPbG9Nwg3X99-4cb ⌋
czVhxIj3ZPqDHXorHEMDg9fKOn4EJ5_V9zrwVA-UzNrlWuBYD6qcIxnb31-LbTlFmR23H7m8NIOh9fbQ74mVEysbs3Z424B3m-uznl_dYjsyE9t7P ⌋
uxdlA6T5XeyWi7hWFgEWiSlc0K_5owb-AZ3COwVDE9sSmsSSJgjohydgMQo6i1XMdmRWPX6MtjQxb0fMhstzNGlMZb-UVjc8DveVuaTgry0W0OGM4 ⌋
McCQ"

↩→

↩→

↩→

45 },
46 {
47 "e": "AQAB",
48 "key_ops": [
49 "encrypt"
50 ],
51 "kid": "HCLEkPub",
52 "kty": "RSA",
53 "n": "uPTteAABCBoUoLOBeVULerfvEPUqrJ6wPo4YXLLp0tUMNA6nNU-muLjNQLG-H8nPp0YnpE_dQ5xg66xrOTeSCoXOSGLBRS2GNssCRa2rakVvvLdk ⌋

P1SijF-bSWWE4URgmOYrN_KPPY49Mkx8oAbxnmE2vp0J2RDbOLo-mlehDO-GeBnlU8d2zrmhN6ZLi9p3UD6DHHhn09WqwpYvkoYMxeGwG1VcMeyac ⌋
rVII7gClC-K_isYdnwXHUmcjRaX_H7VdJE_oUtj98jzpyX_Eb0ZEFWomX_M2j9OP1N6fnmHPs5d09sOCazR9ZTVxzNpDbdhDJNGjOLZDDM8v5fw68 ⌋
GXQw"

↩→

↩→

↩→

54 }
55 ],
56 "user-data": "2F1BA1ACE2C689D0A3A3340B97472E7FCA5DB03B6621B2FB761FB068E377BE1CA3D4944E5060C607ED39C3E3FCCAF0114C3202AD530 ⌋

FA3143863E1B4E1485B20",↩→

57 "vm-configuration": {
58 "console-enabled": true,
59 "root-cert-thumbprint": "6nZZnYaJc4KqUZ_yvA-mucFdYNouvlPnITnNMXsHl-0",
60 "secure-boot": true,
61 "tpm-enabled": true,
62 "tpm-persisted": true,
63 "vmUniqueId": "D2685751-DDE3-4814-A2A2-565A69FE911B"
64 }
65 },
66 "x-ms-ver": "1.0"
67 }

Listing 3: Azure JWT claims


	Abstract
	1 Introduction
	2 Motivation and use cases
	3 Background
	3.1 Intel TDX
	3.2 Remote Attestation
	3.3 Secure Shell Protocol

	4 Design
	5 Implementation
	5.1 Environment
	5.2 Quote and token generation
	5.3 Verifying the evidence

	6 Related work
	7 Conclusions
	8 Source

